A Comparison of Group-based Data Persistence
Techniques in MANET's

Aaron M. Rosenfeld, Robert N. Lass,
Dustin S. Ingram, and William C. Regli
Department of Computer Science
Drexel University, Philadelphia, PA
Email: {ar374,urlass,dustin,regli} @cs.drexel.edu

Abstract—Maintaining a consistent set of state information
across applications in tactical edge, mobile ad-hoc networks
(MANETS) is a challenging, yet mission-critical task. This paper
analyzes the performance and effectiveness of eight approaches
to data persistence with three different persistence requirements.
This is done by introducing COPE, a middleware framework
for reliable data delivery that allows different protocols to be
configured at runtime. Our empirical results show that Trickle
combined with either classical flooding (CF) or NORM provides
the best combination of effectiveness and low overhead, compared
to other approaches.

I. INTRODUCTION

Maintaining a consistent set of state information across
group-oriented applications in tactical edge, mobile ad-hoc
networks (MANETSs) is a challenging, yet often mission-
critical task. Unlike in enterprise networks, mobile applications
requiring long-term information consistency among a group
of hosts cannot always use classical reliable transport or rely
heavily on a centralized server due to network partitioning,
high rates of packet loss, and inconsistent network views.

For example, messaging applications often need to continue
timely delivery of certain message information even after
periods of outage or topological disconnection. Situational
awareness systems must still maintain a resilient common
operating picture across the network, even if important quies-
cent data objects are initially sent during periods of network
partitioning or failure.

This challenge has been approached in a variety of ways,
but can be divided into two general categories: reliable
transport protocols and data persistence algorithms. Reliable
transport protocols typically resides at the Transport Layer of
the TCP/IP model, and provide specific stream or session-
based reliability to higher layers. Data persistence algorithms,
residing between these protocols and the Application Layer,
focus on delivering data even if a host is disconnected or out
of communication range during its first transmission.

Some existing work, such as delay-tolerant networking
(DTN) [1], employ a cross-layer approach, combining data
persistence algorithms and transport level reliability. However,
only recently has the interaction of short-term transport-layer
reliability and long-term application-layer data persistence
begun to be studied [2].

Joseph P. Macker
Information Technology Division
Naval Research Lab, Washington, D.C.
Email: joseph.macker @nrl.navy.mil

This paper focuses on examining these interactions in the
context of group-based data persistence. In this domain, mo-
bile network nodes are involved in similar activities and are
therefore interested in much of the same information. Further,
multiple nodes may be involved in the transmission, storage,
and forwarding of a single piece of data.

The tradeoffs of different group-based data persistence
methods are investigated by first comparing a set of candidate
protocols independently as a baseline. Then, different proto-
cols are combined and compared in terms of performance (the
network overhead of the protocol), latency (how quickly data
is received), and effectiveness (how well data is persisted).

Defining how well messages are persisted is dependent upon
the class of data. For example, Position Location Indicators
(PLIs), which may change frequently due to motion and
update reports, may have a very different persistence need than
messages which change less infrequently, such as operational
orders or quiescent information reports. Therefore, each set of
experimental data is analyzed in three contexts, where the data
is classified as:

e Recoverable: When missed, the data should be recovered
but generally does not cause an immediate error (e.g. chat
messages)

e Replaceable: When missed, the data will be replaced by
a more recent version (e.g. GPS location)

o Aggregate: When missed, the data must be recovered
before the application can process any later versions of
the message (e.g. sequential diffs of a file)

II. BACKGROUND

Although tactical MANETS present many networking chal-
lenges, most applications running in these environments still
require data to be delivered in a reliable manner. To address
this requirement, two approaches are typically used: reliable
transport protocols and data persistence algorithms.

A. Reliable Transport Protocols

Many issues which arise in mobile networks can be solved
with short-term, transport-level reliability. For example, simply
resending a message can resolve packet errors due to temporal
interference and short term channel errors.

Network transport protocols for large-scale group dissemi-
nation have been developed since the early 1990s. The Scal-
able Reliable Multicast (SRM) protocol [3] was developed to
provided localized, many-to-many content repair for receivers
with missing data. The Multicast Dissemination Protocol
(MDP) [4] extended classical UDP multicast using a one-to-
many model to provide a scalable, negative-acknowledgment
(NACK) protocol with missing message discovery, repair, and
retransmission. MDP was one of the first protocols to use
Reed-Solomon (RS) codes, potentially improving scalability
and delay with respect to the repair process [5].

MDP’s successor protocol, NORM (NACK-Oriented Reli-
able Multicast) [6], provides similar features but also stream-
ing capabilities, and enables reliable unicast transport as a
wireless alternative to TCP. NORM has been well-documented
and is transitioning into a standards track Internet RFC [6].

Other related transport work has focused on modifying
traditional transport protocols for MANETs. For example,
ATCP (TCP for Ad-hoc networks) [7] provides additional
features to TCP, improving its performance in networks with
high bit-error rate.

Due to their origins in high-fidelity enterprise networks,
however, these protocols tend to have limitations when ap-
plied to networks with high mobility and topological churn,
such as tactical-edge MANETSs. Additionally, most of these
protocols focus on point-to-point communications, and do
not sufficiently address the focus of this paper — group
communications.

B. Persistence Protocols

Long-term communication challenges cannot always be
solved with reliable transport protocols alone, because they
typically focus on short-term network transport sessions. For
example, a situational awareness application would need all
position information to be repopulated after significant session
disruption, system failure, or network failure. In the case of
chat clients, a message may need to be delivered even if the
intended client was unreachable for a long period of time after
the original transmission.

This necessitates a mechanism by which two or more nodes
can exchange and synchronize application data, long after the
data is originally sent. To do so, messages must be maintained
and synchronized across the network.

Early work in this area can be traced to Demers’ seminal
paper [8] which applied epidemic protocols to distributed
database synchronization. Multicast-based consistency tech-
niques where also examined in Van Hook’s work on consis-
tency objects in large-scale distributed simulation projects [9].

Since then, many protocols have been developed for the
purpose of synchronizing application data. Trickle [10], for
example, uses small metadata advertisements to exchange
necessary data for synchronization. DIP [11] improved the ad-
vertisement process, using a binary-search to reduce overhead.
GoSyP [12] employs a more stateful approach, sending unicast
messages between pairs synchronizing nodes. Scuttlebutt [13]
uses sequence numbers and unicast exchanges to transmit only
what is necessary to synchronize nodes.

Although each protocol uses different mechanisms, the over-
all goal is the same: exchange small amounts of information,
locate missing or outdated messages, and then reconcile those
discrepancies through message repairing.

ITI. MOTIVATION

With the vast number of protocol combinations available to
application developers, it is often a daunting task to select a
proper delivery mechanism for network-bound data. Moreover,
this mechanism may need to change based on the deployment
scenario.

This challenge arises so frequently, that it is common to
integrate reliable transport protocols and long-term persistence
algorithms directly into applications. This increases applica-
tions complexity, redundancy, and coupling while decreasing
adaptability and maintainability.

COPE (Common Object Persistence Engine) attempts to
alleviate these burdens, by providing a unified middleware for
reliable data delivery and persistence. Instead of the classical
approach, where a delivery mechanism is specified at runtime,
applications simply pass data to COPE along with desired
persistence levels. COPE then locally stores the data, locates
other (local or remote) applications that are interested in the
data, selects the appropriate delivery technique(s), and persists
the data.

However, before the protocol selection process can occur,
the trade-offs between different classes of protocols, and the
situations in which one should be used over another must be
understood. This paper begins to investigate this topic in order
to increase the adaptivity of COPE, especially in challenged

environments. |y Tyg COPE MIDDLEWARE

COPE is a generic middleware providing reliable delivery
and application-layer data persistence. It uses a pluggable
architecture allowing various protocols, content-stores, and
interprocess communication methods to be specified at run-
time. COPE is entirely written in Java, however it is currently
being ported to C, to reduce resource utilization and increase
portability.

At present, the middleware runs as a daemon which local
applications interact with via a TCP socket on the loopback
device. Data to be persisted is sent to COPE by connected
applications, and recovered data is pushed back to them as it
is encountered.

The middleware’s primary components are shown in Fig-
ure 1:

e Providers: Allow bidirectional conversion between native
COPE objects and formats which can be sent over the
loopback socket. Since these messages remains local,
easy to use but verbose formats such as XML may be
used.

o Client Manager: Handles all local client session sockets
and routes information to and from local clients.

o Content Store: Provides storage for messages which pass
through the COPE instance. This may be volatile (in-
memory hash table) or non-volatile (SQLite' database).

lwww.sqlite.org

oo { COPE Middleware F-~-=-~-~---=-=-=---==-=
(=)
g
XML ‘/.5
Trickle 7 | Provider | | E
S
HTTP 1 ,g
NORM | Protocol | ----------==-==-- . | Client [provider 4 E
Manager (— Protocol Selection — Manager V1A
R ' o
""""""""" «J
Interface Manager ’g
Protocol | | | | Provider | | |Z
_ . =
«J

Fig. 1: A high-level view of the COPE middleware.

e Protocol Manager: Aggregates all available protocols
which could be selected to deliver/receive persistent data
objects.

o Interface Manager: Maintains instantiated protocols run-
ning on network interfaces. Also maintains a list of
remote COPE instances on each interface.

e Routing Logic: Based on input from the Interface Man-
ager, selects the proper interfaces to which a specific data
object should be routed.

e Protocol Selection: Selects adequate protocol(s) to deliver
a message over a specified interface.

When an application establishes a connection to COPE, it
specifies a message format which is available via a Provider
(e.g. XML or HTTP in Figure 1). Additionally, it provides a
set of subscriptions which are used by the client manager to
route recovered data to the proper connected applications.

When a connected application produces data to be persisted,
it sends the data along with an application-unique ID, version
number, persistence level, and optional custom metadata to
COPE. Currently, a message may only be modified (increasing
the version number) by the application that originally created
it.

The COPE Client Manager receives the data, decoded by
the proper provider, and routes it to other locally connected
clients if necessary. It is then stored in the content store. After
this, COPE queries the Interface Manager to determine over
which interfaces the data must be routed. For each one of
these interfaces, depending upon the type of attached network
(e.g. ad-hoc, access point, wired) and the data persistence level
specified by the application, a proper protocol is selected and
started.

Currently the selection of a protocol based on these two
parameters is defined when COPE is started. For example,
one may specify that if the interface is in an ad-hoc mode and
the data must be delivered, Trickle should be used.

While this works for basic network scenarios, in the fu-
ture, auto-configuration techniques could be be integrated
for heterogeneous networks or scenarios where nodes have
multiple operational profiles. Additionally, the process could
be dynamic and change over the course of a scenario, based
on the network state. This motivates the need to experiment
with various network configurations and protocol classes to
allow for more future adaptive, automated system designs.

Parameter | Value

WLAN Model | Basic Range

WLAN Range | 200m
WLAN Bandwidth | 54 Mb/s
Avg. WLAN Delay | 50ms

TABLE I: CORE configuration parameters used for all exper-
iments.
Application Layer
Protocol Type [Implementation Used

Polite Gossip Trickle
Naive Gossip Rumor Mongering

Transport Layer

Protocol Type [Implementation Used

Link-local Broadcast | UDP
Best Effort Multicast | Classical Flooding
Reliable Multicast NORM

TABLE II: Various protocols tested independently and in
combination.

V. EXPERIMENTAL SETUP

Experiments were run in the Common Open Research
Emulator (CORE)? using the configuration in Table . CORE
allows unmodified applications to run in real time on virtual
network stacks.

Each experiment measured the performance of a single
protocol class, or a combination of two protocol classes: one
from the application layer and one from the transport layer as
listed in Table II. Each emulated node ran a message generator
which created a message every five seconds for indefinite
persistence and also ran an instance of COPE with the proper
protocols.

A. Protocols

For each class of protocol in Table II, a well established
implementation was selected for experimentation. Trickle was
selected for polite gossip, which repeatedly advertises the
messages which it is persisting, but remains quiet if its
neighbors are advertising the same messages. This results in
low-overhead, fast reconciliation of differences.

A basic rumor mongering protocol was selected for naive
gossip, which repeatedly broadcasts a list of all messages it is
persisting. Based on this, other instances may request or send
messages to reconcile differences.

For these protocols, three transport layers were compared.
As a baseline, basic UDP broadcast with no forwarding was
used. Then, classical flooding (CF) [14] was used wherein
every node forwards messages it receives exactly once. The
NRL SMF?® implementation was configured in a mode to
provide classical flooding of basic UDP multicast in these
experiments. Finally, NORM was used to provide reliable end-
to-end delivery of messages. NORM can be configured to
operate in multiple modes and the configuration used in this
paper is shown in Table III.

Zhttp://cs.itd.nrl.navy.mil/work/core/
3http://cs.itd.nrl.navy.mil/work/smf

Parameter | Value

Sender Buffer Size

1024 kilobytes

Receiver Buffer Size

1024 kilobytes

Segment Size | 1400 bytes
Block Size | 64
Parity Size | 16
TTL | 32
Robust Factor | -1 (Indefinite)
Probing Mode | None

Data Type

TABLE III: NORM configuration for all experiments.

NORM Object

Parameter | Value(s)

Number of Nodes | 20
Number of Groups | 2,4, 5
Reference Point Separation | 800, 250, 150 meters
Node Separation | 25 meters
Max Area | 1000 x 1000 meters
Total Time | 5 minutes
Speed | 20 & 5 meters/second
Pause Time | 2 4 2 seconds

TABLE IV: The parameters used for the RPGM mobility
model.

As the focus of this paper is on comparing reliable delivery
methods at the transport and application layers, basic models
of lower level protocols (e.g. MAC and PHY layers) were
used. Future work will examine richer lower layer models and
interactions.

B. Mobility

All experiments used the Reference Point Group Mobility
(RPGM) [15] model with the parameters in Table IV. Nodes
were divided into two, four, or five groups and the network
connectivity was varied between high and low. The connec-
tivity primarily affected the frequency with which groups
came into contact, but also slightly changed the intra-group

connectedness.
VI. RESULTS

For all experiments, the performance and latency of each
protocol was measured in the same manner. Performance is
presented as the number of packets at the IP layer, as measured
with tcpdump, and latency is the average amount of time
between when a message is transmitted and received.

The effectiveness is measured in three different contexts, as
introduced in Section I, providing insight into the persistence
capability of each protocol class with respect to different
message types.

A. Preliminary Analysis

This section analyzes the combination of persistence proto-
cols with NORM or CF under the assumption that the data is
of the recoverable type, such as chat messages, as introduced
in Section I. Specifically, message delivery percentage, as
shown in Figures 2 and 3, is used as the metric for protocol
effectiveness.

Figure 6 shows that in all cases, when CF or NORM deliver
a message, it is done with relatively low delay. Additionally,
when messages sent with CF are delivered, they require the
transmission of very few IP packets (Figures 4 and 5). Even
in high-connectivity networks, though, these approaches failed

Message Delivery Percentage
100 T T T

80

60 [

40 -

Message Delivery Percentage

20

-groups 5-groups
Scenario

trickle-norm 23 rumor-cf =

cf trickle
i rumor T rumor-nor

norm EI3TXTE trickle-cf

Fig. 2: Message delivery percentages in high connectivity
scenarios. Note that the Trickle and rumor mongering variants
both provide about the same performance.

to deliver up to 20% of messages, and in low-connectivity
networks, up to 90% due to the amount of disruptions and
disconnection events that occurred. Figure 7 shows that the
standard deviation decreases with higher connectivity, and is
low overall.

This provides a clear motivation to use additional persis-
tence techniques in many situations, but the tradeoffs between
each of these techniques is not as definitive. Although the
rumor mongering variants and the Trickle variants provide
about the same performance in the high-connectivity scenario,
the rumor mongering variants send up to twice as many IP
packets. However, in the low-connectivity scenario, rumor
mongering only sends slightly more packets, but performs
much better. Trickle’s use of polite gossip generally delivers
messages more slowly than rumor mongering which constantly
broadcasts a list of all local messages. The latter also explains
the larger number of packets sent by rumor mongering.

When looking at combination protocols, adding both CF
and NORM cause the message delivery percentages of Trickle
and rumor mongering to increase. Although NORM delivers
slightly more messages, it also sends slightly more packets,
making it and CF nearly equivalent in the context of these
scenarios.

Trickle demonstrates particularly interesting interactions
with the multihop transport protocols NORM and CF. Even
though all packets are retransmitted by all nodes, Trickle sends
fewer packets overall to deliver a message while also providing
higher delivery percentages. This is likely because whenever
a Trickle node broadcasts a message, it stifles all other nodes
from rebroadcasting for a short period.

B. Replaceable

This section analyzes the effectiveness of each protocol at
delivering replaceable messages. There are many examples of
replaceable data on the battlefield such as asset GPS positions,
which may change frequently.

Effectiveness for this type of data is measured as staleness:
the duration of time old data remains on each node. It

Message Delivery Percentage
100 T T T

80

w0l

Message Delivery Percentage

20

4-groups 5-groups

Scenario

ickl

tri rumor-cf
trickle-cf

rumor-norm

trickle-norm <
rumor i

Fig. 3: Message delivery percentages in low connectivity
scenarios. Here, the rumor mongering variants outperform the
Trickle variants.

IP Packets Sent Per Message
10 T T T

Average IP Packets / Delivered Message

|

trickle-norm &
rumor -

fJ
2-groups

4-groups
Scenario

5-groups

rumor-cf
rumor-norm

cf ——= trickle
norm &-scE trickle-cf

Fig. 4: Total messages sent in the high connectivity scenario.

IP Packets Sent Per Message
10 T T T

Average IP Packets / Delivered Message

2-groups 5-groups

4-groups

Scenario
cf ——= trickle trickle-norm - rumor-cf
norm &3Ca trickle-cf mm— rumor rumor-norm

Fig. 5: Total messages sent in the low connectivity scenario.

Average Message Delivery Latency

0.8 -

0.6 [

Average Delivery Latency (s)

0.4 -

0.2

[

4-groups 5-groups

Scenario

2-groups

rumor-cf
rumor-norm

trickle-norm £
rumor 7

cf trickle
norm EI3TXTE trickle-cf

Fig. 6: Average message delivery latency in the high connec-
tivity scenario. The trends are the same for the low connectiv-
ity scenarios, but they are not shown due to space limitations.

Standard Deviation of Delay
25 T T T T 5

Standard Deviation of Delay (s)

i

4-med 5-high 5-low

2-high 2-low 2-med 4-high 4-low 5-med

Scenario

rumor-smf
rumor-norm

trickle-norm &
rumor ¥

smf C—— trickle
= trickle-smf s—

Fig. 7: Standard deviation of the delay.

is assumed that every node maintains a single object, and
publishes a stream of updates.

The average message staleness is shown in Table V. Only
networks with low connectivity are shown, as all protocols in
other experiments showed similar trends.

In each experiment, rumor mongering with either CF or
NORM had the lowest message staleness.

C. Aggregate

Aggregate data is a sequence of messages which are com-
bined to form a final application-level message. In tactical
MANET:s this could be considered a sequence of diffs for

Protocol(s) | 2-High | 4-High | 5-High

CF | 0.782 1.794 2.326

NORM 0.689 1.568 2.100

Trickle 0.403 0.530 0.558

Trickle & CF | 0.373 0.456 0.479
Trickle & NORM 0.359 0.425 0.445
Rumor | 0.303 0.323 0.326

Rumor & CF | 0.294 0.306 0.308
Rumor & NORM 0.294 0.306 0.309

TABLE V: Average message staleness.

Protocol(s) | 2-High | 4-High | 5-High

CF 8.959 9.436 8.723

NORM 6.380 6.257 6.888

Trickle 5.683 11.210 | 12.634

Trickle & CF 5.787 10.325 11.545
Trickle & NORM 5.547 9.660 10.691
Rumor 3.605 5.367 5.614

Rumor & CF 2.986 4.169 4.346
Rumor & NORM 2.987 4.136 4.417

TABLE VI: Average previous messages missing.

code updates, or incremental changes to operational orders.

Table VI shows, on receiving a message, how many previous
messages must be recovered before producing the combined
result. For example, if a node receives code di f s for versions
1, 2, and 35, it must wait for 3 and 4 before upgrading from
version 2 to 5.

It is assumed that each node maintains one application
object and it sends incremental updates as it changes.

Rumor mongering must recover fewer messages on average
than the other approaches, with Trickle with CF or NORM
requiring slightly more.

VII. CONCLUSION AND FUTURE WORK

This paper compared combinations of transport layer pro-
tocols and persistence techniques applied separately and in
tandem under various scenarios. It investigated their overhead
and latency tradeoffs and analyzed the data in different con-
texts.

Overall, CF and NORM work reasonably well when data
needs only a low level of persistence; in highly-connected
networks they have been shown to deliver up to 80% of
messages.

However, as network connectivity decreases, Trickle and
rumor mongering are more effective at persisting all three
types of data. Rumor mongering delivers all three types
of data to the majority of nodes and does so quickly. It
maintained the highest delivery ratio in especially in low-
connectivity networks when compared to Trickle and more
naive approaches. However, it also sends significantly more
data than these other methods.

Trickle with either CF or NORM appear to be the best
combination of delivery percentage, latency, and overhead. Al-
though delivering data slightly slower than rumor mongering,
its data usage is quite low. Furthermore, it performed better
than CF, NORM, and Trickle alone in all three categories of
data.

In the future, several related areas need more detailed
examination. First, the operation of these protocols under
varying wireless contention and congestion conditions should
be further examined since group-oriented network commu-
nication can be rather aggressive in regards to redundant
messaging. As an example, previous work has shown that the
effectiveness of techniques such as CF quickly diminish as
the network becomes congested with additional transmissions.
The tradeoffs here between overhead, delay, and persistence

are non-obvious and need further understanding to be rele-
vant to particular deployment in more bandwidth constrained
environments.

Data persistence approaches should also be investigated in
more heterogeneous environments, where interface devices
may have drastically different behaviors and capabilities. In
particular, the performance of protocols hierarchical, unicast
environments should be investigated to supplement the broad-
cast methods presented in this paper.

REFERENCES

[11 V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, and H. Weiss, “Delay-Tolerant Networking Architecture,” RFC
4838 (Informational), Internet Engineering Task Force, Apr. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc4838.txt

[2] K. Scott, T. Refaei, N. Trivedi, J. Trinh, and J. Macker, “Robust
communications for disconnected, intermittent, low-bandwidth (dil) en-
vironments,” in MILITARY COMMUNICATIONS CONFERENCE, 2011
- MILCOM 2011, nov. 2011, pp. 1009 —-1014.

[3] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A reliable
multicast framework for light-weight sessions and application level
framing,” IEEE/ACM Transactions on Networking (TON), vol. 5, no. 6,
pp. 784-803, 1997.

[4] J. Macker and R. Adamson, “The multicast dissemination protocol
(mdp),” Internet Engineering Task Force, 1999. [Online]. Available:
http://cs.itd.nrl.navy.mil/pubs/docs/draft-macker-rmt-mdp-00.txt

[5] J. Macker, “Reliable multicast transport and integrated erasure-based
forward error correction,” in MILCOM 97 Proceedings, vol. 2. 1EEE,
1997, pp. 973-977.

[6] B. Adamson, C. Bormann, M. Handley, and J. Macker, “NACK-
Oriented Reliable Multicast (NORM) Transport Protocol,” RFC 5740
(Proposed Standard), Internet Engineering Task Force, Nov. 2009.
[Online]. Available: http://www.ietf.org/rfc/rfc5740.txt

[7] J. Liu and S. Singh, “Atcp: Tcp for mobile ad hoc networks,” Selected
Areas in Communications, IEEE Journal on, vol. 19, no. 7, pp. 1300
—1315, jul 2001.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, ser. PODC
’87. New York, NY, USA: ACM, 1987, pp. 1-12. [Online]. Available:
http://doi.acm.org/10.1145/41840.41841

[9]1 D. Van Hook, J. Calvin, and J. Smith, “Data consistency mechanisms to

support distributed simulation,” in Proceedings of the 12th Workshop on

Standards for the Interoperability of Distributed simulations (Orlando,

FL, Mar.). Citeseer, 1995.

P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: a self-regulating

algorithm for code propagation and maintenance in wireless sensor

networks,” in Proceedings of the Ist conference on Symposium on Net-
worked Systems Design and Implementation - Volume 1, ser. NSDI’04.

Berkeley, CA, USA: USENIX Association, 2004, pp. 2-2.

K. Lin and P. Levis, “Data discovery and dissemination with dip,” in In-

formation Processing in Sensor Networks, 2008. IPSN ’08. International

Conference on, april 2008, pp. 433 —444.

A. Rosenfeld, D. Kusic, and W. Regli, “A gossip-based synchronization

protocol for state consistency in distributed applications,” MobiHoc

Tactical MANET Workshop, 2011.

[13] R. van Renesse, D. Dumitriu, V. Gough, and C. Thomas,

“Efficient reconciliation and flow control for anti-entropy

protocols,” in Proceedings of the 2nd Workshop on Large-Scale

Distributed Systems and Middleware, ser. LADIS ’08. New

York, NY, USA: ACM, 2008, pp. 6:1-6:7. [Online]. Available:

http://doi.acm.org/10.1145/1529974.1529983

J. Macker, J. Dean, and W. Chao, “Simplified multicast forwarding

in mobile ad hoc networks,” in MILCOM 2004 Proceedings. 1EEE,

November 2004.

T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad

hoc network research,” Wireless Communications & Mobile Computing

(WCMC): Special Issue on Mobile Ad Hoc Networking: Research,

Trends and Applications, vol. 2, pp. 483-502, 2002.

[10]

(11]

[12]

[14]

[15]

