
FEATURE

Have you ever wanted to send and receive text messages with
your PHP scripts, only to be dissuaded by the astounding
price third parties charge to facilitate the exchange? How
would you like to learn about a free method of utilizing
existing SMS gateways?

Messaging

Aaron Rosenfeldby

PHP: Any version

Other Software: PHP’s IMAP extension (optional)

Useful/Related Links:
IMAP extension docs: •	 http://php.net/imap
imap_open() manual page: •	 http://php.net/imap-open
SMS Gateways: •	 http://en.wikipedia.org/wiki/SMS_gateway
PHP and SMS: •	 http://aaron-rosenfeld.com/phpsms
Usage stats: •	 http://mmetrics.com/press/PressRelease.
aspx?article=20061003-sms-shorttext

TO DISCUSS THIS ARTICLE VISIT:
http://c7y-bb.phparchitect.com/viewforum.php?f=10

In North America, over 76 million people own
a text-enabled mobile device. Similarly, in the
U.K., France and Germany there has been a steady

increase in text messaging, with an estimated 79%
of adults sending at least one text message per day
in 2006. It’s no wonder that more and more websites
are harnessing the power of text messaging to provide
users with mobile access to their Web based services.
However, until recently, this type of communication
has generally only been available to those willing to
fork out several hundred to several thousand dollars
for a GSI modem and software that allows it to interact
with the SMS (Short Message Service) protocol, limiting
the possibility to big companies such as Facebook and
Google.

This medium can now be utilized by many Web devel-
opers and, with a little ingenuity, can be turned into a
very elaborate system to communicate with the outside
world. In this article, I will discuss a free method that

THE WEB

16 • php|architect • September 2008

Li
ce

ns
ed

 to
 4

87
62

 -
 A

ar
on

 R
os

en
fe

ld
 (

aa
ro

n@
aa

ro
n-

ro
se

nf
el

d.
co

m
)

http://php.net/imap
http://php.net/imap-open
http://en.wikipedia.org/wiki/SMS_gateway
http://aaron-rosenfeld.com/phpsms
http://mmetrics.com/press/PressRelease.aspx?article=20061003-sms-shorttext
http://mmetrics.com/press/PressRelease.aspx?article=20061003-sms-shorttext

you can use to send and receive text messages using
pure PHP. In addition, I will go over a few of the ways
in which text messaging can prove a useful tool in Web
development.

Using PHP to interact with the SMS protocol to send
text messages is, of itself, nothing new; there are
dozens of companies that provide gateways that will
allow PHP scripts to send text messages. However,
since this means using both third party hardware and
software resources, those companies obviously will
charge either a per-message or per-month fee. This
can easily add up when you’re sending out hundreds or
thousands of messages.

In this article, I will focus on an alternative method
of sending and receiving text messages that does not
rely on any remote services. This is made possible with
local scripts, written in PHP, that can directly interact
with mobile providers. The main motivation for using
this method is not only to cut out all related expenses,
but also to keep the actual processing of messages
on the local server, allowing greater flexibility and
security.

The method discussed in this article also allows
for multiple endpoints on one server. In other words,
instead of having a single number for all incoming text
messages, we can use as many numbers as we need.
This makes the message handling scripts significantly
smaller, and separates unrelated services. For example,
we can have mobile users send a text message to one
location if they need to interact with an authentication
script, another to query a server’s status, and a third to
check the local weather forecast, rather than having all
this functionality crammed into a single location.

Sending Messages
When you use a third party to send a text message,
a connection is made and data is sent to the remote
service. After that, the third party handles all the pro-
cessing, taking the raw information and transforming it
into something that the SMS protocol can read.

In our case, however, all this processing must be
handled locally. Since we don’t have the hardware
means to turn Web based data into wireless data,
we will go about it by using what’s known as an SMS
Gateway.

Most mobile providers have a service such as this,
available for anyone to use. Basically, an SMS Gateway
provides a unique email address for each phone number
served by the mobile provider. All email sent to that

address is forwarded, in the form of a text message,
via the SMS Gateway to the corresponding cellphone or
mobile device. For example, to send a text message to
a Verizon customer at 123-456-7890, an email could be
sent to 1234567890@vtext.com.

This is a list of some of the major mobile carriers’
SMS Gateways, but there are of course many, many
more, all over the world:

• AT&T—number@txt.att.net

• Bell (CA)—number@txt.bell.ca

• Rogers—number@pcs.rogers.com

• T-Mobile—number@tmomail.net

• Verizon—number@vtext.com

• Virgin Mobile (U.S.)—number@vmobl.com

• Virgin Mobile (CA)—number@vmoble.ca

Using SMS gateways makes sending text messages from
a PHP script extremely easy, but it does have the limi-
tation of requiring us to know which service provider
our target phone number is associated with. This can
usually be overcome by having the user simply select
the name of their provider while on your website, or
by checking the From header of incoming messages. Of
which, more later.

Receiving Messages
Receiving messages is a bit trickier than sending them.
To start with, there is no direct connection between a
wireless phone network and the Internet. In addition,
there is obviously no phone number associated with
your server. This limits our options, in that all incoming
text messages must be sent to an email address rather
than a phone number. This is generally not a problem,
though, since nearly all modern text-enabled phones
are able to send messages to an email address.

The overall approach here is to harness this feature.
We can accept a text message sent from a phone (or
other mobile device) in the form of an email to a
predefined address, and then send the necessary data
to a PHP script for further processing.

There are two ways to achieve this. Either email can
be forwarded directly to a PHP script, or a cronjob can
be set up to connect to a POP3 server and check for
new mail.

17 • php|architect • September 2008

Messaging the Web

Li
ce

ns
ed

 to
 4

87
62

 -
 A

ar
on

 R
os

en
fe

ld
 (

aa
ro

n@
aa

ro
n-

ro
se

nf
el

d.
co

m
)

1234567890@vtext.com
number@txt.att.net
number@txt.bell.ca
number@pcs.rogers.com
number@tmomail.net
number@vtext.com
number@vmobl.com
number@vmoble.ca

Message Forwarding Approach
The actual method of setting up message forwarding
varies depending on the Web and mail server software
but, in general, a message pipe is established in much
the same manner as if emails were to be sent to a
different email address. The recipient of our forwarded
mail, however, is a file—a PHP script in this case—
rather than an email address.

If you are using hosting that gives you access to
a control panel such as CPanel, there should be an
easy-to-use GUI for mail forwarding. If you do not have
that luxury, or just prefer using the command line,
you will need to modify the file containing the servers’
email aliases and forwarders, and then (usually) restart
the mail server. Although it is not possible to cover all
server setups, I will explain in detail how to achieve
this on the most common PHP configuration: a server
using the LAMP architecture that runs sendmail as the
mail server.

Let’s say your hostname is abc.com, and you want
sms@abc.com to forward all incoming emails to a
script located at /var/httpdocs/sms/handler.php. In /
etc/aliases (this is the default location and may vary
depending on your installation), you would need to add
the line:

sms: “|/var/httpdocs/sms/handler.php”

and then restart sendmail:

/etc/init.d/sendmail restart

If you are familiar with Linux, the line we just added
to the aliases should ring a bell. It is exactly the
same as piping, hence the leading | in the alias. All
incoming mail will now be piped to the specified script
via standard input, which can then be read by PHP.
Note that, in addition to the body of the email, all the
headers are also piped to the script. This makes it easy
to determine the originating phone number, carrier and
so on.

The handler.php script itself contains a single
function that reads from stdin, see below. Don’t forget
to make sure the script has execute permissions, or
sendmail will not be able to invoke the pipe!

function readStdIn()
{
 $handle = fopen(‘php://stdin’, ‘r’);
 $content = ‘’;
 while (!feof($handle)) {
 $content .= fread($handle, 1024);
 }

 fclose($handle);
 return $content;
}

The first line of the script returns a handle to php://
stdin which is then read, 1024 bytes at a time, into
$content. When the end of the stdin data is reached,
the entire content of the incoming email will be
returned by the script. It can then be passed to a
processing script.

The Cronjob Approach
As I mentioned earlier, if it’s not possible to set up
email piping on your server, a cronjob can be used to
regularly check the mail server and retrieve all new
mail. These messages can then be processed in the
same way as if they had been forwarded directly to the
script from the mail server. There are a number of ways
to do this, but I will cover what I consider to be the
easiest: using IMAP to connect to a mail server.

The most obvious downside of this solution is that
messages will not be sent to the PHP script in real
time, and there will consequently be a delay between
when a message is sent and when it is processed.

Another downside is the sole requirement for the
IMAP approach: that the target mailbox must actually
exist. In the email forwarding method the mailbox does
not actually need to be present on the server, since all
incoming messages are forwarded to the script directly.

The first step in this approach is to establish a
connection to the mail server using the imap_open()
function. For the purposes of this article, we are going
to connect to a non-authenticated mail server and pas-
sively read messages—that is, the message will not be
deleted until we explicitly do so. The general code for
opening a connection in this manner is:

$mbox = imap_open(‘{wherever.com/notls}INBOX’,
 $username,
 $pass);

Depending on your server, the first argument may
vary. The basic form of the argument, however, is to
have your mail server’s IP or hostname (wherever.com),
followed by any flags you would like to use (/notls).
Surround the resulting string with curly braces, and
then append the mailbox name (INBOX).

There are a variety of different flags that can be
passed to this function, detailing whether SSL is
needed, whether POP3 or IMAP is to be used, whether
messages should be automatically deleted, and so
on. A complete list can be found in the imap_open()

18 • php|architect • September 2008

Messaging the Web

Li
ce

ns
ed

 to
 4

87
62

 -
 A

ar
on

 R
os

en
fe

ld
 (

aa
ro

n@
aa

ro
n-

ro
se

nf
el

d.
co

m
)

sms@abc.com
http://www.php.net/|
http://www.php.net/imap_open()
http://www.php.net/imap_open()

documentation in the PHP manual. The /notls flag
used above disables the use of TLS encryption, thereby
avoiding authentication. We also start in the default
mailbox, INBOX. The arguments $username and $pass
should of course contain the username and password
associated with that mailbox, respectively.

Assuming no there are no errors, $mbox now stores
a connection to the mail server. The next step is to
read the messages in the inbox. For this article, I will
assume that all messages in this mailbox are meant
to be processed by our script. If you plan on using
a single email address for more than one purpose, I
would recommend having messages filtered into other
mailboxes and then reading those rather than the
inbox.

To read each message, we will use the
imap_fetchbody() function. Note that this function
splits the emails into multiple parts. The first part is
the header data, which contains metadata regarding
the message, and the second part is the message body
itself. We will simply concatenate these two sections,
rather than keeping them separate. The reasoning
behind this is simply that it will allow us to use the
same processing function for both the forwarding and
cronjob approaches.

As we read each message, we will use imap_delete()
to mark each message for deletion. Note, we won’t
actually delete them, just mark them for deletion. After
reading all the messages, we will close the connection
with a call to imap_close(), and force deletion of the
marked messages with the CL_EXPUNGE flag. Here you
can see the entire process:

$mbox = imap_open(‘{wherever.com/notls}INBOX’,
 $username, $pass);
$msgs = imap_num_msg($mbox);

for ($i = 1; $i <= $msgs; $i++) {
 $message = imap_fetchbody($mbox, $i, 0) .
 imap_fetchbody($mbox, $i, 1);
 // Later, we will process the message here
 imap_delete($mbox, $i);
}

imap_close($mbox, CL_EXPUNGE);

Processing Messages
After choosing one of the two methods above to
intercept or read incoming emails, you have the basic
framework for an entire SMS processing system. We will
now look into how the contents of the email can be
parsed into a usable format.

If you are using the message-forwarding method,

when a text message is sent to sms@abc.com the
handler script will invoke readStdIn(). The function will
return the entire content of the text message, along
with related header data.

If you are taking the cronjob approach, the imap
script above will iterate over each message in the inbox
and provide access to the exact same data as that
returned by readStdIn().

Listing 1 contains an example of the kind of data
either approach will offer. As you can see, there is
a great deal of additional information besides the
actual text message. All that additional header data
provides us with a means for determining, not only the
subject of the message and the phone number of the
sender, but other important information such as when
the message was sent, the encoding scheme and the
content type. Parsing all of this out into a usable form,
is our first task.

Before I start to take you through that, though, we
need to quickly go over the standard format of an email
so you know which headers can be relied upon, since
individual message headers will vary depending on
which mobile provider sent the email.

In a well formatted email, headers are expected to be
in this form:

identifier: value \n\r

Every header should split its key and value by a colon,
and should be on its own line. Following the final line
of header data, there should be exactly one blank line
before the email (or in our case, text message) content
itself.

Using this knowledge, we can iterate over each line
of the data and, if it matches the pattern of a header,

From 1234567890@VTEXT.COM Wed Aug 06 12:23:17 2008
Received: from njbdmta1.airbridge.net ([66.174.3.138])
by sub.somedomain.com with esmtps (TLSv1:DES-CBC3-SHA:168)
(Exim 4.69)
(envelope-from <1234567890@VTEXT.COM>)
id 1KQlnB-0001oB-60
for sms@abc.com; Wed, 06 Aug 2008 12:23:17 -0400
Received: from njbd-wigdb1 (njbdmta [66.174.3.21])
by njbdmta1.airbridge.net (8.13.6/8.13.6) with ESMTP id m76GNCfp023084
for <sms@abc.com>; Wed, 6 Aug 2008 16:23:16 GMT
Date: Wed, 6 Aug 2008 16:23:12 GMT
Message-ID: <14758162.8581726351192.JavaMail.root@njbd-wigdb1>
From: 1234567890@VTEXT.COM
To: sms@abc.com
Subject: Subject In Here
Mime-Version: 1.0
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 7bit

Contents will be down here

LISTING 1

19 • php|architect • September 2008

Messaging the Web

Li
ce

ns
ed

 to
 4

87
62

 -
 A

ar
on

 R
os

en
fe

ld
 (

aa
ro

n@
aa

ro
n-

ro
se

nf
el

d.
co

m
)

http://www.php.net/imap_fetchbody()
http://www.php.net/imap_delete()
http://www.php.net/imap_close()
sms@abc.com

add it to a $headers array. When the first blank line is
encountered, the remainder of the data will be concat-
enated together and regarded as the message body. My
implementation of this is given in Listing 2.

The function in that listing, parseEmail(), returns an
associative array with two elements: headers, which
contains an array pairing header keys such as From, To
and Date with their respective values (1234567890@
VTEXT.COM, sms@abc.com, Wed, 6 Aug 2008 16:23:12
GMT), and message, which contains the body of the
text message.

And that’s all there is to it! A text message has been
sent from a phone or other mobile device and has been
parsed by a PHP script. The values parsed out of the
email can now be used for anything you like.

Interacting With The Server
Now that we have a two-way communication bridge
open between mobile users and the server itself, we can
jump into some more involved programming.

Since it is physically more difficult to type using a
cellphone keypad than it is on a computer keyboard,
text messages are generally quite brief. This makes
them well suited for sending short commands to the
server.

An excellent way to work with the limitation of short

commands while still providing a robust and extensible
list of functions is to follow the UNIX command
structure. Every command has a short identifier, usually
three to five characters long, followed by the argu-
ments to be passed to the function represented by that
identifier. In addition, every command returns a help
message if invalid arguments are passed, or if a help
argument is passed.

To make this useful within our text messaging
system, we need to look for commands when we process
the message body. Listing 3 shows an extract from an
extensible command processing function. Note that this
function is actually a method of the MessageHandler
class shown in Listing 6, hence the class variables.

Calling processOperation() and passing it the message
body and From header will initiate the processing of
the message. The function looks up the command that
has been sent and then calls the associated callback
function. How is this command-to-callback relationship
set up?

The events property of the MessageHandler class
holds an array that is populated during object construc-
tion. Acceptable commands make up the keys of this
array, and the associated value is the callback function
that should be invoked when the command is sent.
These callbacks could be globally defined functions, or
they could be class methods.

If a command is intended to invoke a globally avail-
able function, the callback value is just the name of
the function as a string, like so:

 1. <?php
 2.
 3. public static function parseEmail($content)
 4. {
 5. $lines = explode(chr(10), $content);
 6. $in_message = false;
 7. $headers = array();
 8. $message = ‘’;
 9. $cur_head = ‘’;
10.
11. foreach ($lines as $line) {
12.
13. if (!$in_message) {
14. if (preg_match(“/^([a-zA-Z\-]+): (.*)/”, $line,
15. $matches)) {
16. $cur_head = strtolower($matches[1]);
17. $headers[$cur_head] = trim($matches[2]);
18. } elseif($cur_head != ‘’) {
19. $headers[$cur_head] .= ‘ ‘ . trim($line);
20. }
21. } else {
22. $message .= $line . “\n”;
23. }
24.
25. if (trim($line) == ‘’) {
26. $in_message = true;
27. }
28. }
29.
30. return array(‘headers’ => $headers,
31. ‘message’ => $message);
32. }
33.
34. ?>
35.

LISTING 2

 1. <?php
 2.
 3. public function processOperation($msg, $to)
 4. {
 5. // Split the message into command and arguments
 6. list($cmd, $args) = split(‘ ‘, trim($msg), 2);
 7. $cmd = trim(strtolower($cmd));
 8. $args = trim($args);
 9.
10. // Check if the command exists
11. if (array_key_exists($cmd, $this->events)) {
12.
13. // Call the function specified as the callback
14. if (is_callable($this->events[$cmd])) {
15. $response = call_user_func($this->events[$cmd], $args,
16. $to);
17. }
18.
19. // If a response should be issued, send it
20. if (is_array($response) && sizeof($response) == 2) {
21. $this->pushToPhone($response[0], $response[1], $to,
22. $this->from);
23. }
24. }
25. }
26.
27. ?>
28.

LISTING 3

20 • php|architect • September 2008

Messaging the Web

Li
ce

ns
ed

 to
 4

87
62

 -
 A

ar
on

 R
os

en
fe

ld
 (

aa
ro

n@
aa

ro
n-

ro
se

nf
el

d.
co

m
)

http://www.php.net/Date

function function_name($args, $from)
{
 // Processing goes on here
 return array(‘response subject here’,
 ‘response message here’);
}

If a callback needs to be the method of a class,
regardless of whether the method is static or the class
instantiated, the callback value must be a two-element
array. The first element should be set to the name of a
static class or a variable containing an instance of an
instantiated class. The second element should be set to
the name of the method to be called. See the staticfunc
and instancefunc commands in Listing 4 for examples of
this.

Each of the callback functions listed in the events
array must accept two arguments. The first of these will
take any arguments that follow the base command. As
an illustration, if the message:

somefunc arg1 arg2 arg3

is being processed, somefunc is assumed to be the
command and arg1 arg2 arg3 will be passed to the asso-
ciated callback function as $args. The second argument
passed to the callback, $from, is simply the From header
that was sent along with the original email.

The callbacks referenced in $events should also
return an array that has two elements. This array will
be used to send a response back to the phone that
originally sent the command. The first element stores
the contents of the Subject header, and the second the
body of the message.

The code in Listing 4 will cause the global function
testFunc() to be invoked when a text message is sent
containing the command globalfunc. Assuming all
is well, a text message with the subject “Message
received” and body “Your test message has been

processed” will be sent back. Similarly, if the staticfunc
command is sent, it will call static_class::method_
name(), and if the instancefunc command is sent, it will
call $class_instance->method_name().

Putting It All Together
We will now use all the elements I have covered here
to create a reusable library for handling incoming
and outgoing text messages. This will make it easy
to set up multiple Web services, since we only need
to change the contents of the $events array in order
to allow different functions to be executed. Two
classes, MessageHandler and EmailPipe, will make up
the reusable part of the library, and a single handler
script will be used for each service that needs its own
endpoint (read: email address).

You can see the EmailPipe class in Listing 5, and the
MessageHandler class in Listing 6.

 1. <?php
 2.
 3. function testFunc($args, $from)
 4. {
 5. // Do stuff...
 6. return array(‘Message received’,
 7. ‘Your test message has been processed’);
 8. }
 9.
10. $events = array(‘globalfunc’ => ‘testFunc’,
11. ‘staticfunc’ => array(‘static_class’,
12. ‘method_name’),
13. ‘instancefunc’ => array($class_instance,
14. ‘method_name’),
15.);
16.
17. ?>
18.

LISTING 4

 1. <?php
 2.
 3. class EmailPipe
 4. {
 5. public static function readStdIn()
 6. {
 7. $handle = fopen(‘php://stdin’, ‘r’);
 8. $content = ‘’;
 9. while (!feof($handle)) {
10. $content .= fread($handle, 1024);
11. }
12. fclose($handle);
13. return $content;
14. }
15.
16. public static function parseEmail($content)
17. {
18. $lines = explode(chr(10), $content);
19. $in_message = false;
20. $headers = array();
21. $message = ‘’;
22. $cur_head = ‘’;
23.
24. foreach ($lines as $line) {
25.
26. if (!$in_message) {
27. if (preg_match(“/^([a-zA-Z\-]+): (.*)/”, $line,
28. $matches)) {
29. $cur_head = strtolower($matches[1]);
30. $headers[$cur_head] = trim($matches[2]);
31. } elseif($cur_head != ‘’) {
32. $headers[$cur_head] .= ‘ ‘ . trim($line);
33. }
34. } else {
35. $message .= $line . “\n”;
36. }
37.
38. if (trim($line) == ‘’) {
39. $in_message = true;
40. }
41. }
42.
43. return array(‘headers’ => $headers,
44. ‘message’ => $message);
45. }
46. }
47.
48. ?>
49.

LISTING 5

21 • php|architect • September 2008

Messaging the Web

Li
ce

ns
ed

 to
 4

87
62

 -
 A

ar
on

 R
os

en
fe

ld
 (

aa
ro

n@
aa

ro
n-

ro
se

nf
el

d.
co

m
)

The EmailPipe class contains two of the methods
you saw earlier, readStdIn() and parseEmail(). The class
is used purely to read incoming email from standard
input and then separate the headers and body of the
message. Since it needs no configuration or special
treatment between different handler scripts, EmailPipe
is a static class and need not be instantiated.

Most of the time, the output of
EmailPipe::readStdIn()—the message body along with
all headers in a single string—will be sent directly
to EmailPipe::parseEmail(). However, I separated the
functionality into two methods so that parseEmail()
could be sent messages from other sources—namely, a
cronjob, where message forwarding is not available.

The MessageHandler class contains the majority

of the code to parse the text message, invoke the
requested functions and handle the dispatching of re-
sponses. As you can see, it also has two properties that
haven’t yet been introduced, $from and $authorized,
both of which are set in the constructor alongside the
$events array.

$from should simply contain the email address that
will be used as the From header for outgoing messages.
This will usually be the same email address that is
piping messages into the script.

The $authorized property holds an array of all the
email addresses that are allowed to use the script.
Having 1234567890@vtext.com in the array, for example,
will allow the Verizon customer with the phone number
123-456-7890 to send commands to the server. It’s
sometimes desired that all incoming messages be pro-
cessed, regardless of their From header, however. This
can be achieved by including an asterisk in the $autho-
rized array, as the default MessageHandler constructor
does.

To check incoming messages against the list of
email addresses, the public method processIncoming()
was added to the class. It filters out any unauthorized
messages, thereby ensuring that it only relays text
messages from allowed numbers to the processOpera-
tion() method that actually invokes the command.

Do not rely solely on this method for protection; it’s
far from foolproof. A forged From header could easily
bypass this kind of security measure, thereby allowing
illegitimate access to the script.

I wanted to briefly go over the pushToPhone() method
within the MessageHandler class as well. The header
that is used to determine where a message came from
varies from mobile device to mobile device. Some
devices use the From header, but others—including
Verizon—will ignore it completely and use the

 1. <?php
 2.
 3. class MessageHandler
 4. {
 5. private $from;
 6. private $events;
 7. private $authorized;
 8.
 9. public function __construct($from, $events,
10. $authorized = array(‘*’))
11. {
12. $this->from = $from;
13. $this->events = $events;
14. $this->authorized = $authorized;
15. }
16.
17. public function processIncoming($msg, $headers)
18. {
19. if (in_array(‘*’, $this->authorized) ||
20. in_array(strtolower($headers[‘from’]),
21. $this->authorized)) {
22. $this->processOperation($msg, $headers[‘from’]);
23. }
24. }
25.
26. public function processOperation($msg, $to)
27. {
28. list($cmd, $args) = split(‘ ‘, trim($msg), 2);
29. $cmd = trim(strtolower($cmd));
30. $args = trim($args);
31.
32. if (array_key_exists($cmd, $this->events)) {
33.
34. if (is_callable($this->events[$cmd])) {
35. $response = call_user_func($this->events[$cmd], $args,
36. $to);
37. }
38.
39. if (is_array($response) && sizeof($response) == 2) {
40. $this->pushToPhone($response[0], $response[1], $to,
41. $this->from);
42. }
43. }
44. }
45.
46. private function pushToPhone($sub, $msg, $to, $from)
47. {
48. $headers = ‘From: ‘ . $from . “\r\n”;
49. $headers .= ‘Reply-To: ‘ . $from . “\r\n”;
50. $headers .= ‘Return-Path: ‘ . $from . “\r\n”;
51.
52. mail($to, $sub, $msg, $headers, ‘-f ‘ . $from);
53. }
54. }
55.
56. ?>
57.

LISTING 6

“The header used to
determine where a

message came from varies
from mobile device to

mobile device.”

22 • php|architect • September 2008

Messaging the Web

Li
ce

ns
ed

 to
 4

87
62

 -
 A

ar
on

 R
os

en
fe

ld
 (

aa
ro

n@
aa

ro
n-

ro
se

nf
el

d.
co

m
)

1234567890@vtext.com

unchangeable Received header instead, which offers
a little more security. The fourth argument that is
passed to the mail() function, ’-f ’ . $from, will force
sendmail (or whatever mail server is running) to send
the message as if it were coming from the $from email
address. In the event that this argument is not passed,
even if the From header is set, PHP will send from
whatever user Apache is running under—generally, that
will be nobody. If this happens, the mobile user will see
text messages coming from nobody@abc.com, which will
most likely lead to confusion!

The handler script for the email forwarding approach,
the file to which emails are sent via stdin, is given in
Listing 7. The only portion of code that needs to be
changed for different endpoints is in the configuration.
For obvious reasons, I would not recommend that you
put your callback functions directly into this file.

The way the code in Listing 7 processes a message
should be relatively straight forward. The email is read
from standard input and split into a headers array and
body string, which are then passed to an instance of
MessageHandler for final handling. Don’t forget that
you’ll need the shebang line at the top of the script if
it is being executed by a forwarder.

The handler script for the cronjob approach, as
shown in Listing 8, is very similar but will step through
and process all of the emails in the inbox rather than a
single message.

A Word On Security
Always remember that From headers can be forged. I
cannot stress enough that you should never, ever rely
on them alone for security. This is especially true if
you plan on using text messaging for server control
or command execution at the shell level. Anyone can
do just as we are doing here and use the PHP mail()
function to send a spoofed email from 1234567890@
vtext.com.

If you plan on implementing commands that could
potentially have severe repercussions if executed by
unauthorized users, be sure to require the sender to
respond to a message you send from your script. Even
if a script spoofs a From header, that script will not be
able to read a message you send back to that address if
it doesn’t have access to the spoofed account.

In addition to this, I would recommend logging every
single message that goes into and out of the handler
script. Review the logs frequently, and be sure to limit
externally accessible commands to safe operations.

Potential Uses
There is a plethora of uses for an SMS-to-PHP library
such as this, and I wanted to cover a few of those that
I have personally made use of. Each of them can easily
be integrated into an existing system to allow your Web
applications to interact with mobile phone users.

 1. #!/usr/bin/php -q
 2. <?php
 3.
 4. // Set up configuration
 5. $sms_config = array(‘from’ => ‘sms@abc.com’,
 6. ‘events’ => array(‘test’ => ‘testFunc’),
 7. ‘authorized’ => array(‘1234567890@vtext.com’,
 8. ‘0987654321@txt.bell.ca’,
 9.),
10.);
11.
12. // Read standard input into string
13. $message = EmailPipe::readStdIn();
14.
15. // Parse the string into header and body
16. $email = EmailPipe::parseEmail($message);
17.
18. // Create message handler instance
19. $handler = new MessageHandler($sms_config[‘from’],
20. $sms_config[‘events’],
21. $sms_config[‘authorized’]);
22.
23. // Process the message
24. $handler->processIncoming($email[‘message’], $email[‘headers’]);
25.
26. ?>
27.

LISTING 7

 1. #!/usr/bin/php -q
 2. <?php
 3.
 4. // Set up configuration
 5. $sms_config = array(‘test’ => ‘sms@abc.com’,
 6. ‘events’ => array(‘test’ => ‘testFunc’),
 7. ‘authorized’ => array(‘1234567890@vtext.com’,
 8. ‘0987654321@txt.bell.ca’,
 9.),
10.);
11.
12. // Open an IMAP connection to the inbox
13. $mbox = imap_open(‘{wherever.com/notls}INBOX’, ‘username’, ‘pass’);
14.
15. // Create the message handler
16. $handler = new MessageHandler($sms_config[‘from’],
17. $sms_config[‘events’],
18. $sms_config[‘authorized’]);
19.
20. $msgs = imap_num_msg($mbox);
21.
22. for ($i = 1; $i <= $msgs; $i++) {
23. $message = imap_fetchbody($mbox, $i, 0) .
24. imap_fetchbody($mbox, $i, 1);
25.
26. // Process the message content
27. $email = EmailPipe::parseEmail($message);
28. $handler->processIncoming($email[‘message’], $email[‘headers’]);
29.
30. // Mark the message for deletion
31. imap_delete($mbox, $i);
32. }
33.
34. imap_close($mbox, CL_EXPUNGE);
35.
36. ?>
37.

LISTING 8

23 • php|architect • September 2008

Messaging the Web

Li
ce

ns
ed

 to
 4

87
62

 -
 A

ar
on

 R
os

en
fe

ld
 (

aa
ro

n@
aa

ro
n-

ro
se

nf
el

d.
co

m
)

http://www.php.net/mail()
nobody@abc.com
http://www.php.net/mail()
1234567890@vtext.com
1234567890@vtext.com

Accessing small areas of website content is the most
obvious and widely implemented use for text messaging
from a Web service. A weather command, for example,
could return a ten day forecast for a given area. Much
of the content that is currently on your site can
probably be just as easily sent via a text message as via
a browser.

Utilizing commands and arguments, it would be
possible to have a search feature for your site. If
you run a restaurant listing site, for example, a user
could text the message search Philadelphia—using
Philiadelphia as the single argument—to find a listing
of restaurants in Philadelphia. The possibilities are
endless!

A great bonus of using text messaging in Web devel-
opment is that the receiving script will automatically
have the sender’s phone number available to it. Using
this information alongside a country code and area
code database, it is fully possible to localize scripts and
provide content that is relevant to your users.

Another use for text messaging is for authentica-
tion. Preventing users from creating fake accounts that
use up your resources is a problem that has plagued
message boards, chat rooms and registration forms
for over a decade. The most common website solution
is to send the user a confirmation email in which a
code or link is given to activate the account. However,
with today’s technology setting up a temporary email
account is far from difficult—even for spam bots.

Text messaging can provide a better alternative.
When a user registers on your website, they should
enter a phone number and mobile provider in your

 1. <?php
 2.
 3. function checkPort($args, $from)
 4. {
 5. $s = split(‘:’, $args);
 6.
 7. if (sizeof($s) != 2 || !is_numeric($s[1])) {
 8. return array(‘Invalid service’,
 9. ‘Arguments for this command must be ‘ .
10. ‘in the form SERVER:PORT’);
11. }
12.
13. $server = $s[0];
14. $port = intval($s[1]);
15. $errno = 0;
16. $errstr = ‘’;
17. $conn = @fsockopen($server, $port, $errno, $errstr, 5);
18.
19. if ($conn) {
20. fclose($conn);
21. return array(‘Service online’,
22. ‘The service running on ‘ .
23. $server . ‘:’ . $port . ‘ is ONLINE’);
24. }
25.
26. return array(‘Service offline’,
27. ‘The service running on ‘ .
28. $server . ‘:’ . $port . ‘ is OFFLINE ‘ .
29. ‘ - Error: ‘ . $errno);
30. }
31.
32. ?>
33.

LISTING 9

“Much of the content
on your site could be
just as easily sent via
a text message as via a

browser.”

24 • php|architect • September 2008

Messaging the Web

Li
ce

ns
ed

 to
 4

87
62

 -
 A

ar
on

 R
os

en
fe

ld
 (

aa
ro

n@
aa

ro
n-

ro
se

nf
el

d.
co

m
)

http://www.servergrove.com

registration form. A text message is then dispatched via
a method similar to MessageHandler->pushToPhone().
The message contains a randomly generated number
that has simultaneously been placed in a database.
The user must then enter the code that was sent into
another online form, which is checked against the
database. This guarantees that the user does in fact
have access to that phone number and is most likely
not a bot.

Server Monitor
Servers run 24/7; however, the server administrator
does not always work the same hours. If a server is
offline for several hours without anyone being aware of
the problem, it can prove catastrophic for a business.

One way to deal with this might be to have a handler
script set up for incoming text messages that can send
out the server status as a response to a command. This
would make it easier to ascertain whether the service
is in fact down before calling the server administrator.
Listing 9 contains an example of a callback function
that could be used to process messages in the form cmd
server:port to query the status of a service on a given
server and port.

Creating an automated version of this server monitor
is of course also possible. In Listing 10, you can see
an example of a similar script that could be set to run
as a scheduled task or cronjob. The script queries three
services running on different servers and alerts an
administrator, via text message, if any of those services
are offline or not responding within an acceptable
timeframe. As you can see, the $ports array simply
holds a lookup for the default ports associated with

different services. The $services array stores the URL or
IP address and the name of the service that should be
monitored at that address.

Keep in mind that this is a very simplistic version
of a monitoring script, intended purely to illustrate
the concept. It has no flood control, and will send a
message to $admin every time the script is run. If you
were to fully implement this functionality, it would be
a much better idea to ensure that the administrator
will only be alerted once per service outage. To achieve
this, a database or even a text file could be used to
track the last time notifications were sent.

Signing Off
Although it may not seem obvious, text messaging
can be extremely useful for PHP programmers. It can
provide us with an easy-to-use method of communicat-
ing with those that are not necessarily at a computer
but still need access to online services. It can be useful
both to end users, in terms of accessing site content,
and to IT staff, in terms of server monitoring and
maintenance.

I hope that this article has motivated you to use text
messaging in your own PHP applications, and demon-
strated an easy-to-use, free approach of doing so.

The code I have used throughout this article is a
modified version of a more sophisticated script I use
for my own text messaging needs. I would love to hear
from developers that decide to use this code, or even
just the overall concept, as a basis for developing their
own SMS scripts.

Aaron Rosenfeld is currently a freelance Web developer
and programmer, but plans to focus on computational
programming in the future. He is majoring in Computer
Science at a university in Philadelphia, Pennsylvania,
and is also preparing for his Zend certification. Aaron
actively works on a number of PHP projects that can be
found on his programming-related blog at http://aaron-
rosenfeld.com. Aaron can be directly contacted at aaron@
aaron-rosenfeld.com or through his website.

 1. <?php
 2.
 3. $admin = ‘1234567890@vtext.com’;
 4. $ports = array(‘ftp’ => 21,
 5. ‘ssh’ => 22,
 6. ‘http’ => 80,
 7.);
 8. $services = array(array(‘www.some-url.com’, ‘http’),
 9. array(‘www.some-url.com’, ‘ssh’),
10. array(‘www.some-other-url.com’, ‘ftp’),
11. array(‘127.0.0.1’, ‘http’),
12.);
13.
14. foreach ($services as $service) {
15. // Assume an existing instance of MessageHandler where the
16. // command ‘mon’ is associated with the callback checkPort()
17. $handler->processOperation(‘mon ‘ . $service[0] . ‘:’ .
18. $ports[$service[1]], $admin);
19. }
20.
21. ?>
22.

LISTING 10

25 • php|architect • September 2008

Messaging the Web

Li
ce

ns
ed

 to
 4

87
62

 -
 A

ar
on

 R
os

en
fe

ld
 (

aa
ro

n@
aa

ro
n-

ro
se

nf
el

d.
co

m
)

http://aaron-rosenfeld.com
http://aaron-rosenfeld.com
aaron@aaron-rosenfeld.com
aaron@aaron-rosenfeld.com

